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Abstract—We consider a practical cell-free massive multiple-
input-multiple-output (MIMO) system with multi-antenna access
points (APs) and spatially correlated Rician fading channels. The
significant phase-shift of the line-of-sight component induced by
the user equipment movement is modeled randomly. Further-
more, we investigate the uplink spectral efficiency (SE) with
maximum ratio (MR)/local minimum mean squared error (L-
MMSE) combining and optimal large-scale fading decoding based
on the phase-aware MMSE, phase-aware element-wise MMSE
and linear MMSE (LMMSE) estimators. Then new closed-form
SE expressions with MR combining are derived. Numerical
results validate our derived expressions and show that the SE
benefits from the spatial correlation. It is important to observe
that the performance gap between L-MMSE and MR combining
increases with the number of antennas per AP and the SE of the
LMMSE estimator is lower than that of other estimators due to
the lack of phase-shifts knowledge.

Index Terms—cell-free massive MIMO, spatially correlated
Rician fading, phase-shift, spectral efficiency.

I. INTRODUCTION

As one of the most promising technologies for future wire-

less communication, cell-free massive multiple-input-multiple-

output (CF mMIMO) has been widely investigated in [1]–

[5]. The key concept is that a large number of access points

(APs) are connected to the central processing unit (CPU) via

fronthaul connections to jointly serve the user equipments

(UEs) on the same time-frequency resource. The number of

APs is envisioned to be much larger than the number of

UEs, thus distances between the closest AP-UE pairs decrease

greatly, which leads to the decrease in path loss and the

increase in macro diversity gain. In the uplink (UL), CF

mMIMO usually uses maximum ratio (MR) combining for

the low complexity but [6] advocates for local minimum mean

squared error (L-MMSE) combining for its better performance.

Moreover, the large-scale fading decoding (LSFD) method

proposed for mMIMO originally has been utilized in CF

mMIMO systems to further improve the throughput [6].
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The vast majority of scientific papers on CF mMIMO

are making the simplifying assumption of Rayleigh fading

channels [6]–[9] or Rician fading channels where the line-

of-sight (LoS) component has a static phase [10]. Recently,

the authors in [11] indicate that the practical channel in CF

mMIMO should be composed of a semi-deterministic LoS

path component with random phase-shifts and a stochastic

non-line-of-sight (NLoS) path component. The phase-shift of

the LoS component is modeled as a uniformly distributed

random variable due to UE mobility and hardware effects

like phase noise. However, [11] is based on the assumption of

single-antenna APs, while practical APs are usually equipped

with multiple antennas. Furthermore, the authors in [12]

consider spatially uncorrelated Rician fading channels with

unknown phase shifts and multi-antenna APs. Unfortunately,

it did not consider the spatial channel correlation which has a

significant impact on CF mMIMO systems [13].

To address these limitations, we consider a CF mMIMO

system over spatially correlated Rician fading channels with

phase-shifts and multi-antenna APs. The same channel model

has been investigated in the cellular mMIMO scenario in [14].

The main contributions of this paper are as follows: (1) We

consider three useful channel estimators with different prior

information: the phase-aware MMSE with all prior informa-

tion, the phase-aware element-wise MMSE (EW-MMSE) with

phase-shifts and partial large-scale fading knowledge and the

linear MMSE (LMMSE) with all large-scale fading but no

phase-shift knowledge; (2) Based on these channel estimators

and the LSFD method, we derive the UL SE expressions for

any combining scheme and compute closed-form SE expres-

sions for MR combining; (3) We analyse the UL SE with

MR/L-MMSE combining over correlated/uncorrelated Rician

fading channels numerically.

II. SYSTEM MODEL

We consider a CF mMIMO system consisting of M APs

with N antennas each and K single-antenna UEs. The channel

response is constant in a coherence time-frequency block of

length τc channel uses. In the UL, we reserve τp channel uses

for the training and τu = τc − τp channel uses for the data

transmission. Let hmk ∈ CN denote the channel between AP

m and UE k. We assume hmk is an independent random

variable for every AP m-UE k pair and hmk in different

coherence blocks are independent and identically distributed

(i.i.d.). We consider the spatially correlated Rician fading

http://arxiv.org/abs/2110.05796v1
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channel which is composed of a semi-deterministic LoS path

component and a stochastic NLoS path component as

hmk = Φmkh̄mk + gmk, (1)

where gmk ∼ NC(0,Rmk) is the NLoS component and

Rmk ∈ CN×N is the spatial correlation matrix. βNLoS
mk =

tr(Rmk)
N

denotes the large-scale fading coefficient for the NLoS

propagation. h̄m,k ∈ CN represents the deterministic LoS

component. Moreover, Φmk = diag(ejϕmk1 , · · · , ejϕmkN ) ∈
CN×N where ϕmkn ∼ U [−π, π] is the additional phase-shift

of the LoS component between the n-th antenna of AP m and

UE k. In this paper, we assume all elements of Φm,k are equal,

so the LoS component in (1) can be denoted as h̄mke
jϕmk .

Note that ϕmk ∼ U [−π, π] vary at the same pace as gmk and

ϕmk in different coherence blocks are assumed to be i.i.d.

Remark 1. We notice that (1) is a multi-antenna generaliza-

tion of [11] and an extension of [12] to spatially correlated

Rician fading channels.

Remark 2. We can treat each N -antenna AP as a cluster of

N single-antenna APs only if the channel coefficients to the

N antennas of an AP are independently distributed.

A. Channel Estimation

We use τp mutually orthogonal pilot sequences for channel

estimation. φk ∈ Cτp denotes the pilot sequence of UE k,

with ‖φk‖2 = τp. Notice that K > τp, so more than one UE

use the same pilot sequence. We define Pk as the index subset

of UEs that use the same pilot sequence as UE k including

itself. The received signal yp
m ∈ CN×τp at AP m is given by

yp
m =

K
∑

k=1

√

p̂khmkφ
T
k + np

m, (2)

where p̂k is the pilot transmit power of UE k, np
m ∈ CN×τp

is additive noise with independent NC(0, σ
2) entries, and σ2

is the noise power. In order to estimate hmk, AP m multiplies

yp
m with pilot sequence of UE k to obtain y

p
mk = yp

mφ∗
k as

y
p
mk =

√

p̂kτphmk +

K
∑

l∈Pk\{k}

√

p̂lhmlφlφ
∗
k + np

mφ∗
k. (3)

Based on (3), we can derive three useful channel estimators

with different prior information. We will focus on the effects of

phase-shifts and spatial correlation matrices in the following.

1) Phase-Aware MMSE Estimator: If h̄mk, Rmk and ϕmk

are available for AP m, we can derive the phase-aware MMSE

estimate of hmk as

ĥmmse
mk = h̄mke

jϕmk +
√

p̂kRmkΨ
−1
mk (y

p
mk − ȳ

p
mk) , (4)

where ȳ
p
mk =

∑

l∈Pk

√
p̂lτph̄mle

jϕml and Ψmk =
∑

l∈Pk
p̂lτpRml+σ2IN . ϕmk, y

p
mk and ȳ

p
mk change in every

coherence block so that (4) is a single realization. The channel

estimate ĥmmse
mk and estimation error h̃mmse

mk = hmk− ĥmmse
mk are

independent random variables with

E

{

ĥmmse
mk |ϕmk

}

= h̄mke
jϕmk,Cov

{

ĥmmse
mk |ϕmk

}

= p̂kτpΩmk,

E

{

h̃mmse
mk

}

= 0, Cov
{

h̃mmse
mk

}

= Cmmse
mk ,

where Ωmk = RmkΨ
−1
mkRmk and Cmmse

mk = Rmk −
p̂kτpRmkΨ

−1
mkRmk.

2) Phase-Aware EW-MMSE Estimator: If h̄mk, ϕmk and

the diagonals of Rmk are available for AP m, we can obtain

the phase-aware EW-MMSE estimation of hmk as

ĥew
mk = h̄mke

jϕmk +
√

p̂kDmkΛ
−1
mk (y

p
mk − ȳ

p
mk) , (5)

where Dmk , diag([Rmk]nn : n = 1, · · · , N) and Λmk ,

diag([Ψmk]nn : n = 1, · · · , N). The channel estimate ĥew
mk

and estimation error h̃ew
mk = hmk−ĥew

mk are correlated random

variables with

E

{

ĥew
mk |ϕmk

}

= h̄mke
jϕmk ,Cov

{

ĥew
mk |ϕmk

}

= Σmk,

E

{

h̃ew
mk

}

= 0, Cov
{

h̃ew
mk

}

= Cew
mk,

where Σmk , p̂kτpDmkΛ
−1
mkΨmkΛ

−1
mkDmk and Cew

mk ,

Rmk − p̂kτp(RmkΛ
−1
mkDmk −DmkΛ

−1
mkRmk) +Σmk.

3) LMMSE Estimator: If h̄mk and Rmk are available and

the phase-shift ϕmk is unknown at AP m, the LMMSE

estimate of hmk is

ĥlmmse
mk =

√

p̂kR
′
mk (Ψ

′
mk)

−1
y
p
mk, (6)

where R′
mk , Rmk + h̄mkh̄

H
mk and Ψ′

mk ,
∑

l∈Pk
p̂lτpR

′
ml + σ2IN . The channel estimate ĥlmmse

mk

and estimation error h̃lmmse
mk = hmk − ĥlmmse

mk are uncorrelated

random variables with

E

{

ĥlmmse
mk

}

= 0,Cov
{

ĥlmmse
mk

}

= p̂kτpΩ
′
mk,

E

{

h̃lmmse
mk

}

= 0,Cov
{

h̃lmmse
mk

}

= Clmmse
mk ,

where Ω′
mk = R′

mk(Ψ
′
mk)

−1R′
mk and Clmmse

mk = R′
mk −

p̂kτpR
′
mk(Ψ

′
mk)

−1R′
mk.

B. UL Data Transmission

In the UL, all UEs simultaneously send τu UL data symbols

per coherence block to the APs. The received signal ym ∈ CN

at AP m is

ym =

K
∑

k=1

hmksk + nul
m, (7)

where sk ∼ NC(0, pk) is the UL signal transmitted by UE

k with power pk = E{|sk|2} and nul
m ∼ NC(0, σ

2IN ) is

the independent noise. Every AP can detect the UL data

locally with a receive combining vector. Let vmk denote the

combining vector designed by AP m for UE k and the local

estimate of sk in AP m is given by

s̃mk=vH
mkhmksk +

K
∑

l=1,l 6=k

vH
mkhmlsl + vH

mkn
ul
m. (8)

Any combining vector is available for (8) and AP m can

use its local channel state information (CSI) to design vmk.

We consider two combining schemes: MR combining with

vmk = ĥi
mk where i ∈ {mmse, ew, lmmse} correspond to the
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MMSE, EW-MMSE and LMMSE estimators, respectively, and

L-MMSE combining as

vmk=pk

(

K
∑

l=1

pl

(

ĥi
ml

(

ĥi
ml

)H

+Ci
ml

)

+ σ2IN

)−1

ĥi
mk.

(9)

Note that (9) is optimal for the MMSE and LMMSE estimators

since it can minimize MSEmk = E{|sk−vH
mkym|2 | {ĥi

mk}},

but suboptimal for the EW-MMSE estimator.

To further mitigate the inter-user interference, the local

estimates {s̃mk : m = 1, · · · ,M} are sent to the CPU where

they are linearly weighted by the LSFD coefficients to derive

ŝk =
∑M

m=1 α
∗
mks̃mk as

ŝk = aHk bkksk +

K
∑

l=1,l 6=k

aHk bklsl + nk, (10)

where ak = [α1k, · · · , αMk]
T ∈ CM is the LSFD coef-

ficient vector, bkl = [vH
1kh1l, · · · ,vH

MkhMl]
T ∈ CM , and

nk =
∑M

m=1 α
∗
mkv

H
mkn

ul
m, respectively.

III. SPECTRAL EFFICIENCY ANALYSIS

In this section, we study the UL SE of CF mMIMO with

different estimators and combining schemes. Based on (10),

an achievable SE of UE k is

SEk =
τu
τc

log2 (1 + γk) (11)

with the effective SINR γk given by

γk =
pk
∣

∣aHk E {bkk}
∣

∣

2

aHk

(

∑K
l=1 plΓkl − pkE {bkk}E

{

bH
kk

}

+ σ2Zk

)

ak

,

(12)

where Γkl = [E{vmkh
H
mlv

H
m′khm′l} : ∀m,m′] ∈ CM×M and

Zk= diag(E{‖v1k‖2}, · · · ,E{‖vMk‖2}) ∈ RM×M . And the

expectations are with respect to all sources of randomness [6].

Note that we use the use-and-then-forget (UatF) bound as

(11) which serves a lower bound of the UL ergodic channel

capacity of UE k [15]. To maximize the effective SINR in

(12), ak can be optimized by the CPU as

ak =

(

K
∑

l=1

plΓkl − pkE {bkk}E
{

bH
kk

}

+ σ2Zk

)−1

E {bkk} ,

(13)

which leads to the maximum SE value

SEk =
τu
τc

log2
(

1 + pkE
{

bH
kk

}

ak
)

. (14)

The proof of (13) follows from [15, Lemma B.10] since (13)

is a generalized Rayleigh quotient with respect to ak with a

rank-one numerator.

Closed-form SE expressions cannot be obtained when using

L-MMSE combining, while Monte Carlo simulations are used

to compute the SE with L-MMSE combining. However, we

can derive closed-form SE expressions if MR combining

adopted. Closed-form SE expressions with different estima-

tors can be similarly formed as SEi
k = τu

τc
log2(1 + γi

k)

with γi
k shown as (15), where bi

k = E{bkk} ∈ CM

and Zi
k = diag(E{‖ĥi

1k‖2}, · · · ,E{‖ĥi
Mk‖2}). We define

Γi
k =

∑K
l=1 plΓ

i,(1)
kl +

∑

l∈Pk
plΓ

i,(2)
kl − pkb

i
k(b

i
k)

H +

σ2Zi
k ∈ CM×M . The SE with maximizing LSFD vector

ak = (Γi
k)

−1bi
k is given by

SEi
k =

τu
τc

log2

(

1 + pk
(

bi
k

)H (
Γi
k

)−1
bi
k

)

. (16)

A. SE with the Phase-Aware MMSE Estimator

For MR combining based on the phase-aware MMSE esti-

mator vmk = ĥmmse
mk , we have [Zmmse

k ]mm = tr(p̂kτpΩmk) +

‖h̄mk‖2 and bmmse
k = diag(Zmmse

k ). And Γ
mmse,(1)
kl ∈ C

M×M

is a diagonal matrix with the (m,m)-th element given by
[

Γ
mmse,(1)
kl

]

mm
= p̂kτptr (RmlΩmk) + h̄H

mkRmlh̄mk

+ p̂kτph̄
H
mlΩmkh̄ml +

∣

∣h̄H
mkh̄ml

∣

∣

2
. (17)

The computation of above results follow similar steps as [11]

and [13]. Moreover,

Γ
mmse,(2)
kl =

{

p̂kp̂lτ
2
p z

mmse
kl (zmmse

kl )
H
, l ∈ Pk\{k}

bmmse
k (bmmse

k )
H − L2

k, l = k
(18)

where zmmse
kl = [tr(R1lΨ

−1
1k R1k), · · · , tr(RMlΨ

−1
MkRMk)]

T

and Lk = diag(‖h̄1k‖2, · · · , ‖h̄Mk‖2). So Γmmse
k =

∑K
l=1 plΓ

mmse,(1)
kl +

∑

l∈Pk
plΓ

mmse,(2)
kl − pkb

mmse
k (bmmse

k )H +
σ2Zmmse

k . So we can derive the closed-form SE based on the

phase-aware MMSE estimator from (16) using the matrices

and vectors that we have computed.

B. SE with the Phase-Aware EW-MMSE Estimator

If MR combining based on the phase-aware EW-MMSE

estimator vmk = ĥew
mk is adopted, [Zew

k ]mm = tr(Σmk) +
‖h̄mk‖2 and bew

k = [p̂kτptr(DmkΛ
−1
mkDmk) + ‖h̄mk‖2 : m =

1, · · · ,M ]T∈ RM . Besides, Γ
ew,(1)
kl ∈ CM×M is a diagonal

matrix with the (m,m)-th element given by
[

Γ
ew,(1)
kl

]

mm
= tr (RmlΣmk) + h̄H

mkRmlh̄mk

+ h̄H
mlΣmkh̄ml +

∣

∣h̄H
mkh̄ml

∣

∣

2
. (19)

Γ
ew,(2)
kl =

{

p̂kp̂lτ
2
p z

ew
kl (z

ew
kl )

H
, l ∈ Pk\{k}

bew
k (bew

k )
H − L2

k, l = k
(20)

where zew
kl = [tr(D1lΛ

−1
1k D1k), · · · , tr(DMlΛ

−1
MkDMk)]

T . So

Γew
k =

∑K
l=1 plΓ

ew,(1)
kl +

∑

l∈Pk
plΓ

ew,(2)
kl − pkb

ew
k (bew

k )H +
σ2Zew

k . We can derive the closed-form SE expression of

the phase-aware EW-MMSE estimator from (16) using the

matrices and vectors that we have computed.

C. SE with the LMMSE Estimator

If we use MR combining based on the LMMSE estimator

vmk = ĥlmmse
mk , we have [Zlmmse

k ]mm = p̂kτptr(Ω′
mk) and

blmmse
k = diag(Zlmmse

k ). Moreover, Γ
lmmse,(1)
kl ∈ CM×M is a

diagonal matrix with the (m,m)-th element given by
[

Γ
lmmse,(1)
kl

]

mm
= p̂kτp

[

tr (RmlΩ
′
mk) + h̄H

mlΩ
′
mkh̄ml

]

.

(21)
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γi
k =

pka
H
k bi

k

(

bi
k

)H
ak

aHk

(

∑K
l=1 plΓ

i,(1)
kl +

∑

l∈Pk
plΓ

i,(2)
kl − pkbi

k

(

bi
k

)H
+ σ2Zi

k

)

ak

. (15)

[

Υ
(1)
kl

]

mm
= p̂kp̂lτ

2
p

[∣

∣

∣

∣

tr

(

(

TH
mkl(1)

)
1

2

R
1

2

ml

)∣

∣

∣

∣

2

+tr
(

RmlTmkl(1)

)

+h̄H
mlT

H
mkl(1)h̄ml + h̄H

mlS
H
mkRmlSmkh̄ml +

∣

∣h̄H
mlSmkh̄ml

∣

∣

2

+2Re

{

tr

(

(

TH
mkl(1)

)
1

2

R
1

2

ml

)

h̄H
mlSmkh̄ml

}]

+ p̂ktr
(

RmlTmkl(2)

)

+ p̂kh̄
H
mlT

H
mkl(2)h̄ml −

[

Γ
lmmse,(1)
kl

]

mm
, (23)

Besides, we can obtain Γ
lmmse,(2)
kl as

Γ
lmmse,(2)
kl = Υ

(1)
kl + dlmmse

kl

(

dlmmse
kl

)H −Υ
(2)
kl , (22)

where Υ
(1)
kl ∈ CM×M , Υ

(2)
kl ∈ CM×M are diago-

nal matrices and dlmmse
kl = diag{(Υ(2)

kl )
1

2 }. The (m,m)-

th element of Υ
(1)
kl is given by (23), where Smk =

R′
mk(Ψ

′
mk)

−1,Tmkl(1) = SmkRmlS
H
mk and Tmkl(2) =

τpSmkΨ
′
mkS

H
mk − p̂lτ

2
pSmkR

′
mlS

H
mk, respectively. And the

(m,m)-th element of Υ
(2)
kl is

[

Υ
(2)
kl

]

mm
= p̂kp̂lτ

2
p tr
(

R′
mlR

′
mk (Ψ

′
mk)

−1
)2

. (24)

So Γlmmse
k =

∑K
l=1 plΓ

lmmse,(1)
kl +

∑

l∈Pk
plΓ

lmmse,(2)
kl −

pkb
lmmse
k (blmmse

k )H + σ2Zlmmse
k and we can obtain the closed-

form SE expression based on the LMMSE estimator from (16).

Note that the phase-aware MMSE estimator achieves better

SE than other estimators since it makes use of prior phase

knowledge, which will be demonstrated in Section IV.

IV. NUMERICAL RESULTS

We consider APs and UEs are uniformly distributed in a

1 × 1 km2 area with a wrap-around scheme [15]. All AP-UE

pairs have LoS paths and the pathloss is computed by the

COST 321 Walfish-Ikegami model as

βmk [dB] = −30.18− 26 log10

(

dmk

1m

)

+ Fmk, (25)

where dmk is the distance between AP m and UE k (taking

an 11m height difference into account). The Rician κ-factor

is computed as κmk = 101.3−0.003dmk . We model the shadow

fading Fmk as in [1] with Fmk =
√

δfam +
√

1− δfbk,

where am ∼ N (0, δ2sf) and bk ∼ N (0, δ2sf) are independent

random variables and δf is the shadow fading parameter. The

covariance functions of am and bk are E{amam′} = 2
−

d
mm′

ddc ,

E{bkbk′} = 2
−

d
kk′

ddc where dmm′ and dkk′ are the geographical

distances between AP m-AP m′ and UE k-UE k′, respectively,

ddc is the decorrelation distance depending on the environment.

Let δf = 0.5, ddc = 100m and δsf = 8 in this paper. The

large-scale coefficients of hmk are given by

βLoS
mk =

κmk

κmk + 1
βmk, βNLoS

mk =
1

κmk + 1
βmk. (26)

Each AP is equipped with a uniform linear array (ULA)

with omnidirectional antennas so the n-th element of the

deterministic LoS component h̄m,k ∈ CN can be written as
[

h̄mk

]

n
=
√

βLoS
mke

j2πdH (n−1) sin(θmk), where θmk is the angle

of arrival to the UE k seen from AP m and dH denotes the

antenna spacing parameter (in fractions of the wavelength).

40 50 60 70 80 90 100
0.5

1

1.5

2

2.5
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3.5

4

Fig. 1. Average SE against the number of APs M with different combining
schemes for K = 40, N = [1, 2, 4] and σϕ = 15◦ .

The spatial correlation matrix Rmk is generated based on the

Gaussian local scattering model [15]. The (l, n)-th element of

Rmk is given by

[Rmk]ln =
βNLoS
mk√
2πσϕ

∫ +∞

−∞

ej2πdH (l−n) sin(θmk+δ)e
− δ2

2σ2
ϕ dδ,

(27)

where δ ∼ N (0, σ2
ϕ) is a Gaussian distributed deviation from

θmk with angular standard deviation (ASD) σϕ. All the UEs

transmit with power 200mW, the bandwidth is 20MHz, the

noise power σ2 = −94 dBm, and every coherence block

contains τc = 200 channel uses where τp = 10 channel uses

are reserved for pilot transmission.

Figure 1 shows the UL SE averaged over random UE

locations and shadow fading realizations as a function of

the number of APs M for different N with MR/L-MMSE

combining based on the MMSE estimator. The average SE

grows with N , e.g., 92.02% improvement with MR combining

for N = 4,M = 100 compared with the N = 1,M = 100
scenario. Moreover, L-MMSE combining performs much bet-

ter than MR combining, e.g., 27.78% SE improvement for L-

MMSE combining compared with that of MR combining for

N = 4,M = 100. The performance gap between L-MMSE

and MR combining becomes larger with the increase of N
since L-MMSE combining can use all antennas on each AP to

suppress interference, which means that L-MMSE combining

should be advocated in the scenario with multi-antenna APs.

Figure 2 shows the cumulative distribution function (CDF)

curves for the SE per UE over spatially correlated/uncorrelated

Rician fading channels with MR/L-MMSE combining based

on the MMSE estimator. The spatial channel correlation

increases as σϕ reduces. Let σϕ = 5◦/30◦ represent

strong/moderate spatial correlation, respectively, and Rmk =
βNLoS
mk IN is diagonal in the uncorrelated fading scenario. Note

that the SE benefits from the spatial correlation since the spa-



5

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

0.4 0.6

0.04
0.05
0.06

Fig. 2. CDF of SE per UE for M = 100, K = 40 and N = 4 over
correlated/uncorrelated Rician fading.
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Fig. 3. Average SE against the number of APs M with different estimators
and combining schemes for K = 40, N = 4 and σϕ = 15◦.

tial channel correlation improves the level of favorable prop-

agation and channel estimation quality. This finding coincides

with the one in [15, Sec. 4.1]. The CDF curve in moderate

spatial correlation scenario approximately coincides with that

of the uncorrelated fading scenario. Besides, the strong spatial

correlation outperforms the moderate spatial correlation and

the gap at 95% likely SE points between the strong spatial

correlation and the moderate spatial correlation are 11.64%
and 29.78% for MR/L-MMSE combining, respectively.

Figure 3 shows the average SE as a function of the number

of APs M for N = 4 with MR/L-MMSE combining based

on different estimators. For MR combining, markers “×”

generated by analytical results from (16) overlap with the

curves generated by simulations, respectively, which validates

our derived closed-form SE expressions. In the considered

scenarios, the MMSE estimator with all prior information

undoubtedly achieves the best performance. Moreover, the

EW-MMSE estimator with phase-shifts and partial large-

scale fading knowledge outperforms the LMMSE estimator

with only large-scale fading knowledge but no phase-shifts

knowledge. The performance gap between the EW-MMSE

estimator and the LMMSE estimator are 3.88% and 3.24%
for MR/L-MMSE combining, respectively, for M = 100.

Furthermore, we observe that performance gap due to the lack

of phase-shifts knowledge between the MMSE estimator and

the LMMSE estimator are 6.04% and 6.30% for MR/L-MMSE

combining, respectively, for M = 100. Note that the phase-

shift is significant for the SE of CF mMIMO systems so it is

worth acquiring phase-shifts to use a more advanced estimator.

V. CONCLUSIONS

In this paper, we study the UL SE of a CF mMIMO system

over spatially correlated Rician fading channels, where the

phase-shift of the LoS component is modeled randomly. For

phase-aware MMSE, phase-aware EW-MMSE, and LMMSE

estimators, we derive UL SE expressions for any combining

scheme and compute closed-form SE expressions for MR

combining. It is important to find that L-MMSE combining

performs much better than MR combining in multi-antenna

APs scenarios. Moreover, the SE grows with the number of

antennas per AP and benefits from the spatial correlation.

Finally, the MMSE estimator achieves the best performance

and the SE of the LMMSE estimator is lower than the one

of other estimators due to the lack of phase-shift knowledge.

In the future work, we will consider multi-antenna UEs with

uplink precoding, power control, and algorithmic scalability

to enable implementation of large CF mMIMO networks.
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